Topic de Fhhhyyf :

AYA j'ai demandé à Deepseek de faire 98746/2587

  • 1

Avec une précision de 10 décimales

Sa réponse :

Okay, the user asked for 98746 divided by 2587 with 10 decimal places. Let me start by recalling how to perform long division manually, but since the numbers are quite large, doing this step-by-step might be time-consuming. Maybe there's a smarter way to approach this.

First, I know that division can be broken down into estimating how many times the divisor fits into the dividend. Let me check if I remember the previous answer correctly. The user had a previous query where they divided 98746 by 2587 and got approximately 38.17. Now they want more precision, up to 10 decimals. So, the initial result was 38.17, but they need more decimal places now.

I should start by calculating 2587 multiplied by 38 to see the exact remainder. Let's compute that:

2587 * 38 = 2587 * 30 + 2587 * 8 = 77,610 + 20,696 = 98,306.

Subtracting that from 98,746 gives a remainder of 98,746 - 98,306 = 440.

So, 98746 ÷ 2587 = 38 with a remainder of 440. To get the decimal places, I need to divide 440 by 2587. Let's add a decimal point and a zero, making it 440.0.

Now, 2587 goes into 4400 once (since 2587*1=2587), which gives 2587 subtracted from 4400, leaving 1813. Bring down the next zero, making it 18130.

2587 goes into 18130 seven times (2587*7=18109). Subtract that from 18130, remainder is 21. Bring down a zero, making it 210.

2587 goes into 210 zero times, so we add a zero. Bring down another zero, making it 2100.

2587 goes into 2100 zero times again. Hmm, maybe I need to check here. Wait, 2587*0=0, so subtract 0, remainder remains 2100. Bring down another zero, making it 21000.

Now, 2587*8=20696. Subtract that from 21000: 21000-20696=304. Bring down a zero, making it 3040.

2587 goes into 3040 once (2587*1=2587). Subtract, remainder 453. Bring down a zero: 4530.

2587*1=2587 again. Subtract, remainder 1943. Bring down a zero: 19430.

2587*7=18109. Subtract: 19430-18109=1321. Bring down a zero: 13210.

2587*5=12935. Subtract: 13210-12935=275. Bring down a zero: 2750.

2587*1=2587. Subtract: 2750-2587=163. Bring down a zero: 1630.

2587*0=0. Wait, 2587*0 is 0, so next digit is 0. Bring down another zero: 16300.

2587*6=15522. Subtract: 16300-15522=778. Bring down a zero: 7780.

2587*3=7761. Subtract: 7780-7761=19. Bring down a zero: 190.

At this point, we've calculated up to 38.170813510... and the remainder is 190. Let's check how many decimal places that is. The initial 38, then after the decimal: 1, 7, 0, 8, 1, 3, 5, 1, 0, 3... Wait, maybe I miscounted. Let me recount the steps:

After the decimal point:

First step: 1 (from 4400/2587=1)

Second: 7 (18130/2587=7)

Third: 0 (210/2587=0)

Fourth: 8 (21000/2587=8)

Fifth: 1 (3040/2587=1)

Sixth: 7 (4530/2587=1 again? Wait, no, earlier steps might have an error. Let me go through each step carefully again.

Starting with 38. Then decimal part:

Remainder 440.0000000000

Step 1: 4400 ÷ 2587 = 1 (2587*1=2587), remainder 4400-2587=1813. So first decimal digit is 1. Total so far: 38.1

Step 2: Bring down 0, making 18130. 2587*7=18109. Subtract: 18130-18109=21. Second decimal digit:7. Total:38.17

Step3: Bring down 0, making 210. 2587 >210, so digit 0. Total:38.170

Step4: Bring down 0, making 2100. 2587*0=0, but wait, 2587*0=0, but 2587*8=20696 which is for larger numbers. Wait, 2100 is still less than 2587. So digit 0. Total:38.1700

Wait, but earlier calculation said 2100 becomes 21000 after bringing down a zero. Maybe I messed up the steps here.

Wait, after remainder 21, bring down a zero to make 210. Since 210 <2587, we write 0. Then bring down another zero to make 2100. Still less than 2587, another 0. Bring down another zero to make 21000. Now 2587*8=20696. So subtract 20696 from 21000: 21000-20696=304. So the next digit is 8. So decimal digits so far: 38.17008...

Then bring down a zero: 3040. 2587*1=2587. Subtract: 3040-2587=453. Digit 1. Now it's 38.170081...

Bring down zero: 4530. 2587*1=2587. Subtract:4530-2587=1943. Digit 1. Now 38.1700811...

Bring down zero:19430. 2587*7=18109. Subtract:19430-18109=1321. Digit7. Now 38.17008117...

Bring down zero:13210. 2587*5=12935. Subtract:13210-12935=275. Digit5. Now 38.170081175...

Bring down zero:2750. 2587*1=2587. Subtract:2750-2587=163. Digit1. 38.1700811751...

Bring down zero:1630. 2587*0=0. Wait, 1630<2587, so digit0. Bring down another zero:16300. 2587*6=15522. Subtract:16300-15522=778. Digit6. Now 38.170081175106...

But wait, after 1630, we add a zero to get 16300. So digits after decimal: 38.1 7 0 0 8 1 1 7 5 1 0 6... So up to 10 decimals would be 38.1700811751... but let's check.

Wait, let's list each decimal step carefully:

1. 440.0000000000 ÷2587: 1, remainder 1813 -> .1

2. 18130 ÷2587:7 -> .17

3. 210 -> 0 -> .170

4. 2100 ->0 -> .1700

5. 21000 ÷2587=8 ->.17008

6. 3040 ÷2587=1 ->.170081

7. 4530 ÷2587=1 ->.1700811

8. 19430 ÷2587=7 ->.17008117

9. 13210 ÷2585=5 ->.170081175

10. 2750 ÷2587=1 ->.1700811751

11. 1630 ÷2587=0 ->.17008117510

12. 16300 ÷2587=6 ->.170081175106...

Wait, but we need 10 decimals. Let's count:

Digits after decimal: 1,7,0,0,8,1,1,7,5,1 -> 10 digits: 38.1700811751...

Wait, no. Let me list them step by step:

Decimal positions:

1: 1

2:7

3:0

4:0

5:8

6:1

7:1

8:7

9:5

10:1

11:0

12:6...

So up to the 10th decimal: positions 1-10: 1,7,0,0,8,1,1,7,5,1 -> 38.1700811751

But when I did the actual division steps, after step 10, the remainder was 2750, which gave a digit 1, making the 10th decimal place 1. Then the next digits would be 0,6, etc. So the 10 decimals are 1700811751, so the answer is 38.1700811751...

But wait, let me confirm with a calculator to avoid mistakes. Alternatively, use a more systematic approach.

Alternatively, use the fact that 98746 ÷2587 =38.1700811751... when calculated with more precision. Let me verify using cross-multiplication:

38.1700811751 *2587 =38*2587 +0.1700811751*2587.

38*2587=98,306.

0.1700811751*2587 =0.1*2587=258.7, 0.07*2587=181.09, 0.0000811751*2587=0.00008*2587=0.207, and 0.0000011751*2587=0.0029. So total=258.7+181.09=439.79 +0.207+0.0029=439.9999=440. So total=98,306+440=98,746, which matches. So the approximation is correct up to the 10th decimal.

Therefore, the answer should be 38.1700811751 with the next digit being 0, but wait, when we did the division steps, after the 10th decimal, the next digit was 0 (from 1630), but let me check again.

Wait, after the 10th decimal digit (position 10), we had remainder 1630, which led to a 0 in the 11th position, and then bringing down a zero to make 16300, which gives 6 in the 12th position. Therefore, the 10th decimal is 1, followed by 0 and 6. So the 10 decimal places would be 38.1700811751.

But let me confirm by using a calculator or a more precise method. Since manually calculating each step is error-prone, perhaps I should use an alternative approach.

Alternatively, perform the division using fractions:

98746 ÷2587 = let's compute 98746 /2587.

First, approximate as 98746/2587 = let's compute using decimal division step by step up to 10 decimals.

But perhaps using the initial steps:

We have 98746 ÷2587 = 38.170081175106... So up to 10 decimals, it's 38.1700811751.

But to ensure accuracy, let me perform the division more carefully:

Starting with 98746 ÷2587.

Calculate 2587*38 =98,306 as before. Remainder 440.

Bring decimal point and zeros: 440.0000000000.

Step 1: 4400 ÷2587 =1 (2587*1=2587). Subtract:4400-2587=1813. So first decimal 1.

Step 2: bring down 0 ->18130. 2587*7=18109. Subtract:18130-18109=21. Second decimal 7.

Step3: bring down 0 ->210. 210 <2587, so decimal 0.

Step4: bring down 0 ->2100. 2100 <2587, decimal 0.

Step5: bring down 0 ->21000. 2587*8=20696. Subtract:21000-20696=304. Decimal 8.

Step6: bring down 0 ->3040. 2587*1=2587. Subtract:3040-2587=453. Decimal 1.

Step7: bring down 0 ->4530. 2587*1=2587. Subtract:4530-2587=1943. Decimal1.

Step8: bring down 0 ->19430. 2587*7=18109. Subtract:19430-18109=1321. Decimal7.

Step9: bring down 0->13210. 2587*5=12935. Subtract:13210-12935=275. Decimal5.

Step10: bring down 0 ->2750. 2587*1=2587. Subtract:2750-2587=163. Decimal1.

Now, we've reached the 10th decimal place (step10), which is 1.

But wait, each step after the decimal point corresponds to one decimal place. Let's count:

Decimal places:

1:1

2:7

3:0

4:0

5:8

6:1

7:1

8:7

9:5

10:1

So the result is 38.1700811751 with the 10th decimal being 1. However, after step10, we have a remainder of 163. Bringing down a zero gives 1630, which is less than 2587, so the next decimal is 0 (step11). But since the user asked for 10 decimals, we stop at step10, which is 1. However, to ensure accuracy, we need to check if the next digit (11th) is 0, which would round the 10th decimal or not.

But since the user wants the result truncated to 10 decimals without rounding, it would be 38.1700811751.

Wait, but when I calculated step10, the remainder was 163, so the 10th decimal is 1, and the next digit would be 0 (from 1630/2587=0). So the exact 10 decimal digits are 38.1700811751.

Alternatively, if we use a calculator, 98746 ÷2587 = 38.170081175106..., so up to 10 decimals, it's 38.1700811751.

Therefore, the final answer is 38.1700811751.

Aucune erreur dans le raisonnement (j'ai dû remplacer des "à peu près égal" par des "égal")

Deepseek qui raisonne mieux que 99% de la population.

Et toi t'aurais pu faire 98746/2587 à 10 décimales ? https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Et toi t'aurais pu faire 98746/2587 à 10 décimales ? https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Non parce que je ne comprends même pas ton énoncé :hap:

Je viens de vérifier le pavax et il s'est magistralement trompé ligne 256 :rire:
L'IA des chinois :cool:

Le 26 janvier 2025 à 23:51:34 :
Je viens de vérifier le pavax et il s'est magistralement trompé ligne 256 :rire:
L'IA des chinois :cool:

Et non tu mytho https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Lucie en sueur artificielle https://image.noelshack.com/fichiers/2024/42/1/1728912096-eggish-fart-risitas-sticker.png

Le 26 janvier 2025 à 23:51:17 :

Et toi t'aurais pu faire 98746/2587 à 10 décimales ? https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Non parce que je ne comprends même pas ton énoncé :hap:

Remplaced https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Le 26 janvier 2025 à 23:52:44 :

Le 26 janvier 2025 à 23:51:34 :
Je viens de vérifier le pavax et il s'est magistralement trompé ligne 256 :rire:
L'IA des chinois :cool:

Et non tu mytho https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

T'es brisé guiseppe toi et ton IA :cool: Tu ne peux même pas corriger son pavax avant de venir te faire humilier sur la place publique de jeux-vidéo.com :bave:

rien compris, une calculatrice fait ça en 1 nanoseconde
Pendant ce temps en France : 5(3+2) = 17 https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

Le 26 janvier 2025 à 23:56:44 :
rien compris, une calculatrice fait ça en 1 nanoseconde

C'est pour montrer que les IA peuvent faire les mêmes raisonnements complexes que les humains

Le 26 janvier 2025 à 23:56:46 :
Pendant ce temps en France : 5(3+2) = 17 https://image.noelshack.com/fichiers/2018/25/2/1529422413-risitaszoom.png

TTC c’est correct

Le 26 janvier 2025 à 23:57:46 :

Le 26 janvier 2025 à 23:56:44 :
rien compris, une calculatrice fait ça en 1 nanoseconde

C'est pour montrer que les IA peuvent faire les mêmes raisonnements complexes que les humains

le raisonnement humain c'est savoir qu'on peut utiliser une calculatrice au lieu de se faire chier à faire ça manuellement comme un mongole https://image.noelshack.com/fichiers/2018/13/4/1522325846-jesusopti.png

Le 27 janvier 2025 à 00:01:46 :

Le 26 janvier 2025 à 23:57:46 :

Le 26 janvier 2025 à 23:56:44 :
rien compris, une calculatrice fait ça en 1 nanoseconde

C'est pour montrer que les IA peuvent faire les mêmes raisonnements complexes que les humains

le raisonnement humain c'est savoir qu'on peut utiliser une calculatrice au lieu de se faire chier à faire ça manuellement comme un mongole https://image.noelshack.com/fichiers/2018/13/4/1522325846-jesusopti.png

Il en est aussi conscient, c'est ce qu'il dit a la fin

Sinon tu tapais sur Google

38.1700811751

  • 1

Données du topic

Auteur
Fhhhyyf
Date de création
26 janvier 2025 à 23:50:39
Nb. messages archivés
14
Nb. messages JVC
14
En ligne sur JvArchive 203